
 QCD matrix elements and truncated showers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP05(2009)053

(http://iopscience.iop.org/1126-6708/2009/05/053)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 09:19

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/05
http://iopscience.iop.org/1126-6708/2009/05/053/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
5
(
2
0
0
9
)
0
5
3

Published by IOP Publishing for SISSA

Received: March 8, 2009

Accepted: May 5, 2009

Published: May 14, 2009

QCD matrix elements and truncated showers
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1 Introduction

With the LHC becoming fully operational in the near future, searches for new physics

beyond the Standard Model (SM) will enter a new stage. Despite all optimism, a major-

ity of the signals currently discussed suffers from severe backgrounds, among them many

related to the production of heavy SM particles, such as the weak gauge bosons or top

quarks, accompanied with jets. Therefore, it is a central issue for many experimental anal-

yses to correctly describe the production of these particles in conjunction with additional

jets. In many cases, the method of choice is to employ simulation programs. In the past,

such event generators have proved to be extremely useful and versatile tools, being well

capable to describe comparably simple event topologies at sufficiently high precision. How-

ever, especially, when additional hard jets complicate the overall event structure, a proper

simulation is far from being trivial. Typically such extra radiation is approximated with

leading-logarithmic accuracy through the probabilistic description provided by the parton-

shower approach. With rising precision needs, however, improved methods become manda-

tory, which describe the radiation of additional particles beyond the leading-logarithmic

approximation employed by the parton showers.

The most traditional of these methods consists in reweighting QCD emissions as de-

scribed by the parton shower with respective exact matrix elements expressed through

parton-shower variables [1]. Unfortunately, the applicability of this method, however ele-

gant, is constrained to cases, where the parton-shower expression either exceeds the matrix

element or can be modified accordingly, without hampering the event generation efficiency

too badly. This limits the method to a few cases (such as the production of a gluon in

e+e− → qq̄, top-quark decay plus emission of an additional gluon, or the production of

vector bosons in hadron collisions).

In the past years, new and powerful methods for the systematic inclusion of higher

order effects into event generation have been developed. In fact, they can be seen as a ma-

jor theoretical improvement in the detailed understanding of complicated event topologies.

The first of these new methods provides means to consistently match NLO calculations for

specific processes with the parton shower and has been incorporated into the Mc@Nlo

program [2]. Its basic idea is to organise the counter-terms necessary to technically cancel

real and virtual infrared divergences in such a way that the first emission of the parton

shower is recovered. This allows the generation of hard kinematics configurations, which

can eventually be fed into a parton-shower Monte Carlo. Several applications of the orig-

inal approach to different processes have been presented, see for instance [3]. A further

improvement, aiming at an enhanced independence of both the specific hard process and

the details of the parton-shower algorithm is provided by the Powheg-method [4], which

uses the ratio of the actual real radiation matrix element and the original leading-order one

to generate the hardest emission. In its current formulation, this approach can be under-

stood as a hybrid of the traditional parton-shower reweighting and the Mc@Nlo-method.

It has been implemented for various processes, see for example [5].

An alternative approach, aiming at an improved description of multi-jet topologies, has

been described in [6, 7], and is often called the CKKW algorithm. It has been studied, e.g.,
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in [8, 9] in the cases of W and Z production and the production of pairs of these bosons at

the Tevatron and the LHC. The idea here is to separate the phase space for parton emission

into two domains, a hard region of jet production and a softer regime of intra-jet evolution.

This separation is achieved through a k⊥-type jet measure [10, 11]. Then matrix elements

for different parton multiplicities are used to describe the production of a corresponding

number of jets, whereas the parton shower is constrained such that it does not produce

any additional jets. Leading higher-order effects are added to the various matrix elements

by reweighting them with appropriate Sudakov form factors and with ratios of the strong

coupling αs, taken at the k⊥-scales of the individual jet emissions. Independence of the

overall result at logarithmic accuracy on the cut in the jet measure is achieved by the

interplay of Sudakov form factors and the vetoed parton shower with suitable starting

conditions. The method is one of the cornerstones of the event generator Sherpa [12]. A

similar approach, formally equivalent in e+e− annihilations into hadrons and often called

CKKW-L, has been formulated in [13]. In this case a dipole shower rather than a more

traditional parton cascade is used to describe QCD radiation beyond fixed order. Recently,

first steps towards a merging at NLO precision of the matrix elements in this approach

have been presented in [14]. Another, more simplified method, often called the MLM-

prescription, has been introduced in [15]. In [16] the approach was applied for the case of

top-quark production at hadron colliders. An extension of the algorithm to account for

hard QCD radiation in the production of heavy coloured states as they appear in various

beyond the Standard Model scenarios was presented in [17]. The differences between the

three merging prescriptions have been investigated using the example of W -production at

the Tevatron and the LHC [18]. Although the three methods are different and the formal

relationship of the latter method with the two former ones could not be completely worked

out there, the results presented in these studies are in astonishing agreement. First steps

towards such a more formal comparison between the three algorithms has been attempted

in [19]. Recently, so-called “multiplicative matching” methods [20] have also attracted

some attention.

In this paper we aim at establishing a general theory framework, in which different

merging algorithms can be compared on formal grounds. As a result of this we also describe

a merging algorithm that preserves the logarithmic accuracy of the shower. We prove this

in the most general case, including initial state QCD particles. Although the prescriptions

above deal with this case, up to now no statements of the formal accuracy beyond the most

leading logarithms has been made in the literature.

Therefore, the outline of this paper is as follows: section 2 introduces the procedures

necessary to consistently evolve parton showers from matrix elements of arbitrary final-

state multiplicity, which is one of the key ingredients of the envisaged merging approach.

Section 3 presents the general merging procedure. It also sets the theoretical background

of the new approach and introduces the event generation algorithm. It is viable for, in

principle, arbitrary parton-shower algorithms. We show that the new procedure exactly

reproduces the logarithmic accuracy of the shower. The relationship of the framework

presented here with the other three algorithms named above is discussed in appendix A.1,

where we show that the original CKKW approach as well as the CKKW-L algorithm can

– 3 –



J
H
E
P
0
5
(
2
0
0
9
)
0
5
3

be derived as special cases. We also present results of our algorithm in two relevant cases,

namely e+e− annihilations into hadrons at LEP I and Drell-Yan-like production of gauge

bosons at the Tevatron. In section 5 we describe the Monte Carlo programs, which are

employed in this study. Its details, mainly concerning the systematics of the merging itself

are presented in section 6 and discussed in some detail. We conclude in section 7.

2 Prerequisites for merging matrix elements and parton showers

Merging matrix elements with parton showers combines two essentially different approaches

to perturbative QCD. Hard matrix elements are exact at some fixed perturbative order in

the strong coupling αs and are therefore efficient in describing exclusive events with fixed

jet multiplicity, taking into account non-trivial interferences between different amplitudes.

Parton showers are employed to generate the QCD radiation pattern, especially at lower

scales, close to the hadronisation scale ΛQCD. Their application resums potentially large

logarithmic corrections due to Bremsstrahlung effects. In their description they naturally

cannot take into account all interferences, although steps towards including more quantum

mechanical effects are currently being discussed, cf. [21]. In a simulation, best results

can be expected, if the two approaches are combined consistently, such that each of them

operates in those regions of phase space that it describes best.

This necessitates that parton showers can evolve from parton configurations which are

given by high multiplicity matrix elements at certain points in phase space and colour space.

In such cases the starting conditions for parton showers are often ambiguous. We will see

in section 3 that for running the shower in merged samples, it is necessary to interpret the

matrix element as a core process and a series of predefined shower branchings. The reason

is that the parton-shower evolution can take place at any point in this branching history,

giving rise to the truncated shower prescription described in section 2.4. There may be

various such histories arising from the same matrix-element configuration. Hence the most

appropriate one needs to be identified. Typically, in the spirit of the probabilistic picture

underlying the parton shower, it is simply assumed that this is the most probable one.

In this section we derive the formalism and the algorithms necessary to identify the

most probable shower history. We also explain the concept of truncated showers and

elaborate on various strategies to define colour assignments for the shower input.

2.1 Master evolution equations

To prepare for the following arguments we firstly introduce prototypical evolution equations

for parton showers [22], cf. [23] and [24]1

∂ga(z, t)

∂ log(t/µ2)
=

∫ ζmax

z

dζ

ζ

∑

b=q,g

Kba(ζ, t) gb(z/ζ, t) − ga(z, t)

∫ ξmax

ξmin

dξ
∑

b=q,g

ξ Kab(ξ, t) .

(2.1)

1 The functions g can also explicitly depend on the splitting variable ζ, like in the case of angular ordered

DGLAP evolution [25]. This does, however, not complicate our formalism because corresponding terms do

not modify the form of the Sudakov form factor. As far as such an evolution is concerned, the corresponding

notation in the resolved term of eq. (2.1) is implicit.
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In this context, g may denote either a fragmentation function (FF) or a parton distribu-

tion function (PDF), cf. for example [26]. The first term on the right hand side encodes

resolvable emissions, while the second (related through unitarity) describes unresolved

branchings and virtual contributions. The variable t is the evolution parameter, while ζ is

the splitting variable of the scheme. The evolution kernels Kab are obtained from ratios of

appropriate N + 1- and N -particle matrix elements in the respective limit. Schematically

Kab(z, t) → 1

σ
(N)
a (ΦN )

d2σ
(N+1)
b (z, t; ΦN )

d log(t/µ2) dz
. (2.2)

Here ΦN denotes the respective N -particle phase space configuration, which does not play

a role for the limiting behaviour of σ
(N+1)
b (z, t; ΦN ). Equation (2.2) conversely implies

that any splitting kernel Kab can be substituted by an appropriate ratio of matrix elements,

because respective differences are always subleading. For the most common case of standard

DGLAP evolution [27], the kernels are easily identified through

Kab(z, t) → αs(z, t)

2π
Pab(z) , (2.3)

with Pab(z) being the standard DGLAP splitting functions. If eq. (2.1) is written in

inclusive form, i.e. ξmin → 0, ξmax, ζmax → 1, the last term vanishes because of momentum

sum rules for the kernels. In exclusive form, where the ζ- and ξ-boundaries are determined

by a resolution criterion for parton emission, it can be written as the logarithmic derivative

of the Sudakov form factor [28]

∆a(µ
2, t) = exp



−

∫ t

µ2

dt̄

t̄

∫ ξmax

ξmin

dξ
∑

b=q,g

1

2
Kab(ξ, t̄)



 . (2.4)

The factor 1/2 is equivalent to ξ under the integral and the sum over parton species and

avoids double-counting identical decay channels. Equation (2.4) has the generic form of a

no-emission probability between the scales µ2 and t. Potential differences in various shower

algorithms implementing QCD evolution arise due to different evolution kernels K or a

different interpretation of the evolution and splitting variables. This in turn corresponds

to the choice of a factorisation scheme. If eq. (2.1) is modified accordingly, the kernels can

also incorporate more than two partons, for example in the case of dipole [29–32] or dipole-

like [33–35] cascades. Therefore, in this paper the term “parton shower” also includes the

dipole or dipole-like shower algorithms.

2.2 Branching probabilities

Equation (2.1) is commonly rewritten in terms of g/∆. The corresponding form reads

∂

∂ log(t/µ2)

ga(z, t)

∆a(µ2, t)
=

1

∆a(µ2, t)

∫ ζmax

z

dζ

ζ

∑

b=q,g

Kba(ζ, t) gb(z/ζ, t) . (2.5)
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This immediately yields the no-branching probabilities for unconstrained (forward) and

constrained (backward) shower evolution as [22]

P(F )
no, a(t, t

′) =
∆a(µ

2, t′)

∆a(µ2, t)
= exp



−

∫ t′

t

dt̄

t̄

∫ ζmax

ζmin

dζ
∑

b=q,g

1

2
Kab(ζ, t̄)



 , (2.6)

and

P(B)
no, a(z, t, t′) =

∆a(µ
2, t′) ga(z, t)

∆a(µ2, t) ga(z, t′)

= exp



−

∫ t′

t

dt̄

t̄

∫ ζmax

z

dζ

ζ

∑

b=q,g

Kba(ζ, t̄)
gb(z/ζ, t̄)

ga(z, t̄)



 .

(2.7)

The standard procedure for constructing a parton-shower algorithm is to write the differ-

ential branching probability Pbranch, a as

Pbranch, a(t, t
′) =

∂Pno, a(t, t
′)

∂ log(t/µ2)
. (2.8)

Given the current evolution scale t′, at which an actual emission took place, a new scale t

for the next parton emission is chosen according to this probability.

2.3 Shower histories from matrix elements

An obvious point in the recursive algorithm sketched above is to define the first or hardest

scale, at which the parton shower starts off. In order to obtain such suitable starting

conditions for parton showers from arbitrary matrix elements, a clustering algorithm needs

to be defined, which corresponds to “running the shower evolution backwards” on the

respective matrix element. It identifies how, in a parton-shower picture, the matrix element

would have originated from a lower multiplicity matrix element and a shower branching.

Applied iteratively, it leads to the definition of a core process, which cannot be further

decomposed and a sequence of shower branchings yielding the actual final state. The tasks

for the algorithm are thus twofold: Firstly, within an arbitrary n-parton final state the

most probable splitting in terms of shower evolution starting with n − 1 partons needs to

be found. Secondly, corresponding partons must be recombined to obtain the respective

final state. In order to construct this algorithm, the shower evolution simply has to be

“inverted”, which gives the following recipe:

The criterion of the cluster algorithm is defined by the shower evolu-

tion kernels. The recombination scheme is given by the inverted shower

kinematics.

A side effect of this prescription is that during backward clustering the hard matrix

elements, potentially no strict hierarchy is found in the shower evolution parameter. How-

ever, such situations can only arise for kinematic configurations of the matrix element,

which are beyond the accuracy of the shower. Therefore they do not pose a problem here.

– 6 –
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2.4 Truncated showering

Assume a parton-shower history constructed from a matrix element along the lines of

section 2.3 and consisting of a core process plus a single additional branching at scale t,

which we call matrix-element branching. As a consequence of eqs. (2.6) and (2.7), parton

shower emissions may take place at scales t′ > t. This leads to a situation, where, due

to additional partons originating from these branchings, the kinematics of the matrix-

element branching at t needs to be redefined. This corresponds to a truncated shower,

identical to the situation discussed in [4], where a mismatch between hardest emission,

in terms of transverse momentum, and the parton-shower evolution defined in opening

angles has been noted and resolved. There the solution to this situation has been coined

“truncated showering”, because the evolution stops at the lower, dynamical scale t, unlike

ordinary shower evolution, which stops at the universal cutoff scale. A prescription to

unambiguously reconstruct the kinematics of matrix-element branchings is needed. The

most natural choice is to compute the evolution, splitting and angular variables of matrix

element branchings in the shower scheme and reconstruct the branching using the shower

kinematics, after the final state of the branching at t′ > t is fully determined. In other

words:

Splitting kernels introduced by eq. (2.2) define evolution, splitting and

angular variables in the shower scheme, rather than the kinematics of

the corresponding branching.

This coincides with the fact that such branchings are interpreted as predetermined

nodes during shower evolution. It must simply be guaranteed that the evolution stops at

the corresponding scale, inserts the node and restarts afterwards. If for any reason (e.g.

energy-momentum conservation) the matrix element branching cannot be reconstructed

after a truncated shower branching, this shower branching must be vetoed.

2.5 Colour treatment

The treatment of colour is a central issue when dealing with matrix element and shower

generation in QCD processes. Shower formulations inherently are correct only at leading

order in 1/NC , although in [21] first attempts to overcome this limitation have been pre-

sented. Therefore, once matrix elements are to be combined with showers, the treatment

of colour must be adjusted. A simple and obvious way to do so is to interpret the hard

matrix element in the large-NC limit to define colour partners of splitting partons in the

shower language. This problem is more easily solved, when colours are not summed over

but if an algorithm is employed, which unambiguously assigns a certain set of colours to

the external particles in the hard matrix element. The basic idea is then to sample over

colours in a Monte Carlo fashion rather than summing over them.

It was pointed out in [36, 37] that the colour-flow decomposition of QCD amplitudes

is advantageous over both the fundamental and (if existent) the adjoint representation de-

composition. The key point is that in the colour-flow decomposition each colour octet is

treated as a 3× 3 index field whose additional degree of freedom is removed by a projector

onto the colour-octet subspace. Since this issue is central to all our simulations incorporat-

– 7 –
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ing fixed colour assignments in the hard matrix element, we briefly recall the basics of the

algorithm. As an example we consider an n-gluon amplitude A (1, . . . , n). This amplitude

can be decomposed in the colour-flow basis as [36]

A (1, . . . , n) =
∑

σ∈Sn−1

δi1 ̄σ2δiσ2
̄σ3 . . . δiσn ̄1 A (1, σ2, . . . , σn) . (2.9)

Here iσk
and ̄σk

denote the 3- and 3̄-index of parton σk, respectively and the sum runs over

all possible permutations of the set {2, . . . , n}. The quantities A (1, σ2, . . . , σn) are called

colour-ordered or partial amplitudes. They depend on the kinematics of the process only.

All information about colour is incorporated in respective prefactors. Therefore any colour-

ordered amplitude only contains planar diagrams, which greatly alleviates the computation.

A convenient way to interpret eq. (2.9) is to consider it as the decomposition of the full

QCD amplitude into subamplitudes in the large-NC limit. Feeding the results from the

matrix-element calculation into a shower program, the corresponding colour connections

are thus readily determined if one of the terms in the sum is picked as the most probable

colour structure and identify the colour flow according to its colour factor. In this context

we use the fact that interference terms between two different colour structures are always

subleading in 1/NC .2

An algorithm to identify the most probable colour structure could thus look as follows

(cf. [39])

1. Compute the full matrix element with randomly assigned colours for external

QCD partons.

2. Identify all possible permutations {1, ~σ}, which yield a non-zero value of

δi1 ̄σ2δiσ2
̄σ3 · · · δiσn ̄1 . (2.10)

Label them by ~σi and compute the corresponding partial amplitudes A(1, ~σi).

3. If N~σ is the number of identified permutations, choose a partial amplitude

with probability

P~σi
=

|A(1, ~σi)|2∑N~σ

j=1 |A(1, ~σj)|2
(2.11)

Because of the way potential partial amplitudes are identified in the colour-flow decompo-

sition, this prescription is similar to the following simplified strategy

1. Compute the full matrix element with randomly assigned colours for external

QCD partons.

2. Assign colours in the large-NC limit at random, respecting the actual point in colour

space. This translates into two partons only being colour adjacent at large NC , if

they were colour adjacent at finite NC .

2 This argument holds in the colour-flow decomposition and the fundamental representation decompo-

sition. For the latter, see for example [38].

– 8 –
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3. Identify the corresponding permutation ~σ and compute the partial amplitude A(1, ~σ).

Accept the configuration with probability

P~σ =
|A(1, ~σ)|2

|A(1, . . . , n)|2
(2.12)

Naively, the drawback of the latter algorithm is, that potentially many points have to be

drawn for the colour assignment at large NC . In practice, however, this is sufficiently

fast compared to evaluating all possible partial amplitudes for a single nontrivial point in

colour space. Also, in principle the full amplitude squared, |A(1, . . . , n)|, might be much

smaller than the sum of partial amplitudes squared, such that acceptance probabilities are

modified. This algorithm is still sufficiently accurate, since respective differences are always

subleading in 1/NC .

The above algorithm works for arbitrary QCD and QCD-associated matrix elements,

since quark pairs can always be reinterpreted as colour octet objects. Matrix-element

configurations might exist, which do not allow an immediate projection onto large NC

because of the U(1) pseudo-gluon. In this case, a new point in colour space can safely be

assigned, because the respective contribution to the total cross section is subleading.

3 The merging algorithm

The central idea for algorithms merging matrix elements with parton showers is to replace

products of splitting kernels related to hard emissions in the shower evolution with the

appropriate matrix elements, thus reinstalling information about the full hard process

under consideration. Directly implementing a ratio of hard matrix elements in form of a

splitting kernel has the apparent disadvantage that the respective phase-space integration

proceeds in terms of shower kinematics and is thus hard to optimise in a generic way. A

better technique is to first compute the matrix element and then reweight it such that, to

the accuracy of the parton shower, the corresponding shower expression is obtained. To

pursue this strategy, the corresponding no-emission probabilities of the parton shower, i.e.

its Sudakov form factors, must be known. This can, however easily be achieved because

they emerge directly from the evolution equations on which the shower is based.

Only one additional ingredient is eventually needed, namely a criterion, which defines

how to separate matrix-element and parton-shower domain. It will be shown in section 4

that a general form of this criterion can be found, which is based on the soft and collinear

behaviour of QCD at the next-to-leading order. We will refer to it as the “jet criterion”.

At the present stage, the precise form of the jet criterion is unimportant and it is sufficient

and helpful to think of it in an abstract way.

3.1 Construction of the algorithm

The basic idea of the merging — to separate the matrix-element and parton-shower domains

through a cut in the emission phase space, defined by a jet criterion — corresponds to a

simple phase-space slicing. We therefore define the evolution kernels for the matrix-element

– 9 –
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and parton-shower domains

KME
ab (ξ, t̄) = Kab(ξ, t̄) Θ

[
Qab(ξ, t̄) − Qcut

]
(3.1)

KPS
ab (ξ, t̄) = Kab(ξ, t̄) Θ

[
Qcut − Qab(ξ, t̄)

]
, (3.2)

where Qab denotes the jet criterion and Qcut is its cut value. Correspondingly, the two

partial Sudakov form factors are given by

∆ME/PS
a (µ2, t) = exp



−

∫ t

µ2

dt̄

t̄

∫ ξmax

ξmin

dξ
∑

b=q,g

1

2
KME/PS

ab (ξ, t̄)



 . (3.3)

They are related to the full Sudakov form factor, eq. (2.4), through

∆a(µ
2, t) = ∆PS

a (µ2, t)∆ME
a (µ2, t) . (3.4)

In fact, eq. (3.4) effectively encodes the complete merging approach. There, ultimately KME

will be replaced with a ratio of matrix elements, according to eq. (2.2). During the following

rewrite of the evolution equations we simply identify, how the factorisation property of

Sudakov form factors must then be interpreted and employed for event generation. No

further proof for the correctness of the algorithm at any logarithmic order is necessary,

because this follows directly from the accuracy implemented in the parton-shower evolution.

In other words, the proposed merging scheme does not impair the logarithmic accuracy of

the parton shower.

This can be summarised as:

When correcting parton-shower evolution kernels through higher-order

matrix elements, the master evolution equation, eq. (2.1), must be re-

spected. This ensures that the accuracy generated by the factorisation

scheme and the parton shower is fully restored.

We start by defining the conditional backward no-branching probability in the parton-

shower domain,3

P̃(B) PS
no, a (z, t, t′) =

∆PS
a (µ2, t′) g̃a(z, t)

∆PS
a (µ2, t) g̃a(z, t′)

= exp



−

∫ t′

t

dt̄

t̄

∫ ζmax

z

dζ

ζ

∑

b=q,g

KPS
ba (ζ, t̄)

g̃b(z/ζ, t̄)

g̃a(z, t̄)



 .

(3.5)

It corresponds to the modified evolution equation

∂

∂ log(t/µ2)
log

g̃a(z, t)

∆PS
a (µ2, t)

=

∫ ζmax

z

dζ

ζ

∑

b=q,g

KPS
ba (ζ, t)

g̃b(z/ζ, t)

g̃a(z, t)
. (3.6)

3From here on we focus on backward evolution. The corresponding reasoning for forward evolution

follows trivially.
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Equation (3.5) differs with respect to the standard parton-shower evolution because of the

Θ-function, restricting emissions to Q < Qcut, i.e. the soft and collinear domain. Its inter-

pretation is therefore straightforward and gives a rule for the modified shower algorithm

in the merging:

Standard parton-shower evolution is implemented, but radiation with Q >

Qcut is vetoed.

Note that for the case of an initial-state parton shower, typically described with a

backward evolution, the initial scale of the PDF’s is set by the core process of the event.

If eq. (3.5) is employed as is, including the phase-space restriction, the newly defined

functions g̃ do not obey the same evolution as the original functions g. Factorisation is

thus violated. If we want the two evolutions to agree, we have to guarantee that the full

no-branching probability in the merging approach is given by eq. (2.7). This leads to the

definition of the no-emission probability in the matrix-element domain according to

P(B) ME
no, a (t, t′) =

P(B)
no, a(z, t, t′)

P(B) PS
no, a (z, t, t′)

=
∆ME(µ2, t′)

∆ME(µ2, t)
, (3.7)

where

P(B) PS
no, a (z, t, t′) =

∆PS
a (µ2, t′) ga(z, t)

∆PS
a (µ2, t) ga(z, t′)

. (3.8)

It is interesting to note that P(B) ME
no, a is independent of z, which effectively is an outcome

of the factorisation properties of PDF’s and FF’s.

If we assume that a “most probable” shower history of the hard matrix element is

identified through a backward-clustering algorithm, which employs the clustering criterion

and the recombination scheme of the shower, cf. section 2.3, then we obtain the rule:

The weight, eq. (3.7), is assigned to any leg with production scale t′ and

decay scale t found during backward clustering. Strong couplings are

evaluated at the nodal scales of parton recombination.

The reasoning is easily explained. Hard matrix elements in the factorisation scheme of

the shower have the same limiting behaviour as the splitting kernels K, once colour-adjacent

partons become close in phase space. Backward clustering will identify a hierarchical struc-

ture for the factorisation of hard matrix elements into lower-multiplicity matrix elements

and splitting kernels. Eventually, a core process is found, which cannot be further decom-

posed and which corresponds to the starting conditions for a respective shower evolution.

Matrix elements, however, do not implement the no-branching probabilities generated by

parton showers. Also the strong coupling is evaluated at a common scale, rather than the

nodal scales of splittings. Corresponding corrections must therefore be implemented.

An immediate consequence of the above defined algorithm is that the total cross sec-

tion of merged samples can only be influenced by the difference between full hard matrix

elements and the corresponding product of splitting kernels times the core process. In this

respect, we obtain the rule:
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To compute hadronic cross sections, PDF’s must be evaluated at the scale

of the core process defined through backward clustering.

This prescription is independent of the multiplicity of the matrix element, because

showering always starts at the scale of the core process, cf. eq. (2.7). A mismatch in the

two scales would lead to ill-defined backward no-branching probabilities.

3.2 Event generation techniques

Event generation according to the above defined merging procedure proceeds along the

following lines:

• Relevant multi-jet cross sections for the process under consideration are calculated

with the phase-space restriction Q > Qcut. Strong couplings are computed such that

they give an overestimate, which can later on be reweighted. PDF’s are evaluated at

the scale set by the core process.

1. Events are generated according to the above defined cross sections with kinematics

determined by the respective matrix elements.

2. Matrix elements are interpreted in the large NC limit according to methods discussed

in section 2.5. The most probable shower history of the final state is determined

through backward clustering, cf. section 2.3. The clustering is guided by information

from the matrix element, which restricts the available shower histories to those, which

correspond to a Feynman diagram.

3. The event is accepted or rejected according to a kinematics-dependent weight, which

corresponds to evaluating strong couplings in the shower scheme and computing

the no-branching probability, eq. (3.7), for each parton, internal or external, in the

clustered matrix element.

4. The parton-shower evolution is started with suitably defined scales for intermediate

and final-state particles. During showering, any emission harder than Qcut is vetoed.

Intermediate partons undergo a truncated shower evolution, cf. section 2.4

This algorithm has the apparent drawback, that the no-emission probability eq. (3.7)

must be computed before the parton-shower evolution starts. Ideally, however, it should

result as a direct consequence of parton-shower branchings producing hard partons. Such

splittings would obviously fall in the realm of matrix elements and are thus forbidden

inside the parton shower. To obtain a corresponding prescription, the above algorithm is

slightly reformulated.

Firstly, the logarithmic derivative of the no-branching probabilities P(B) ME/PS
no, a is de-

fined as

I(B)ME/PS
a (z, t̄) =

∫ ζmax

z

dζ

ζ

∑

b=q,g

KME/PS
ba (ζ, t̄)

gb(z/ζ, t̄)

ga(z, t̄)
. (3.9)
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From eq. (2.7) one then obtains the full branching probability in terms of I(B) ME/PS,

P(B) ME⊕PS
branch, a (z, t, t′) =

[
I(B) ME

a (z, t) + I(B) PS
a (z, t)

]
exp

{
−

∫ t′

t

dt̄

t̄
I(B)

a (z, t̄)

}
, (3.10)

where I(B)
a = I(B)ME

a + I(B) PS
a . Equation (3.10) corresponds to generating an ordering

parameter t in unconstrained shower evolution, i.e. without the restriction to Q < Qcut.

The first term in the square bracket is however given by hard matrix elements through

eq. (2.2). In order not to double count this contribution, corresponding branchings must

lead to rejection of the entire event. This modifies the respective cross section by

σ → σ · P(B) ME
no, a (t, t′) . (3.11)

Due to this event rejection, the remaining branching probability for accepted parton-shower

steps is given by (cf. the description of the veto algorithm, for example in [40])

P(B) PS
branch, a(z, t, t′) = I(B) PS

a (z, t) exp

{
−

∫ t′

t

dt̄

t̄
I(B)

a (z, t̄)

}

× exp

{ ∫ t′

t

dt̄

t̄

[
I(B)

a (z, t̄) − I(B)PS
a (z, t̄)

]}
,

(3.12)

which yields the vetoed shower algorithm described by eq. (3.5), but with g̃ = g, as required.

We therefore obtain the modified rules

3. The event is accepted or rejected according to a kinematics dependent weight, which

corresponds to evaluating strong couplings in the parton-shower scheme.

4. The parton-shower evolution is started with suitably defined scales for intermediate

and final-state particles. Intermediate partons undergo truncated evolution. During

showering, any emission harder than Qcut leads to the rejection of the event.

Note that in prinicple these two steps could be combined through evaluating the strong

couplings during the shower evolution.

The relation of this algorithm with other merging prescriptions is discussed in ap-

pendix A.

3.3 Highest multiplicity treatment

An apparent problem of the merging algorithm outlined so far is that only a limited final-

state multiplicity N ≤ Nmax can be generated through full matrix elements. Hence the

matrix elements will not produce jet multiplicities N > Nmax that are in principle possible.

Hence, the parton shower must account for missing emissions above Qcut at large N . This

is explained in detail in the following.

Assume a case where N = Nmax emissions in the matrix-element domain have been

accounted for by the matrix element and have been generated through the above defined
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algorithm. This means that up to this point, i.e. up to the scale where the last matrix-

element emission can be resolved in terms of the parton-shower evolution parameter, the

branching probability, eq. (3.10) has been employed, as it should be. Beyond this point,

no further emission can be generated through matrix elements, and the branching proba-

bility becomes

P(B) ME⊕PS
branch, a (z, t, t′) → P(B) ME

no, a (t, t′)
∂P(B) PS

no, a (z, t, t′)

∂ log(t/µ2)
. (3.13)

Relation (3.13) would obviously violate factorisation, because of missing terms, correspond-

ing to the integrated kernel from the matrix-element domain.

This problem can be circumvented by implementing the standard parton-shower evo-

lution beyond the last matrix-element emission.4 It guarantees that the parton shower

respects the description of hard radiation throughout the regime where matrix elements

are applicable, while still filling the remaining phase space.

This prescription is referred to as the highest multiplicity treatment and has been

suggested in a similar form in [8]. In virtuality ordered DGLAP evolution, it approximately

corresponds to setting a local veto scale Qcut → Qmin if N = Nmax, where Qmin is the

minimum jet criterion found during backward clustering.

3.4 Sources of uncertainties

The proposed merging algorithm combines two essentially different approaches to per-

turbative QCD. Any simulation based on it therefore contains a number of sources of

theoretical uncertainties. They can be separated into two categories, merging-related and

non-merging-related uncertainties. The latter would occur in standard perturbative ap-

proaches as well, when using only hard matrix elements or applying only parton showers.

The merging-related uncertainties are instead specific for the combined application of ma-

trix elements and showers and arise from the following:

• The specific choice of the jet criterion.

Since the jet criterion separates matrix-element and parton-shower domain, a varia-

tion of its precise definition can enhance or reduce the contribution of the hard matrix

elements in certain regions of phase space.

• The value of the phase-space separation cut, Qcut.

As for the jet criterion itself, the precise value of the separation cut enhances or

reduces the amount of phase space which is described by hard matrix elements and

can therefore lead to variation of the results.

• The maximum number of jets simulated by hard matrix elements, Nmax.

This parameter limits the number of hard partons up to which correlations can be

expected to be correctly described at tree-level.

4 The term “beyond” refers to the ordering parameter t. Note that the respective scale is set globally

for the event, because the matrix element connects all parton-shower evolutions.
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Other uncertainties are related to the perturbative calculations carried out in the matrix-

element and parton-shower simulation itself. They include:

• Scale uncertainties from matrix elements.

They arise due to the particular choice of factorisation and renormalisation scale of

the leading-order process.

• Scale uncertainties from parton showers.

They arise due to the particular choice of coupling scales within the evolution.

• Uncertainties from the parton density functions employed.

Parton density functions not only enter the cross section calculation when considering

hadronic initial states but also appear in the calculation of the branching probabilities

for the initial-state parton shower, for a detailed discussion of the latter see e.g. [41].

• Uncertainties due to the choice of the leading-order process.

These uncertainties arise in processes which potentially contain many additional jets

with shower evolution parameters above the factorisation scale of the leading-order

process. Corresponding details are discussed in appendix B.

In this publication we focus on a study of the pure merging-related uncertainties. We will,

however not vary the jet criterion, but rather employ what we identify as the optimal choice

for the merging, see section 4.

4 The jet criterion

An important aspect in the QCD evolution equations, eq. (2.1), is that QCD branch-

ings are logarithmically enhanced at small values of the evolution parameter t and/or at

logarithmically large values of the evolution kernels K. This is the manifestation of the

singular infrared behaviour of QCD amplitudes in the respective regions of phase space. In

perturbative calculations employing hard matrix elements these regions therefore must be

regularised. This is typically achieved by identifying parton samples or individual partons

with jets and demanding the jets to be sufficiently isolated. Algorithms defining jets are,

for example, the Durham kT -algorithm [10] and the longitudinally invariant kT algorithms

for deep inelastic scattering and hadron-hadron collisions [11]. Extensions of those algo-

rithms to include jet flavour have been presented in [42]. Their respective measures are

often used as a variable in which phase-space separation is defined for matrix element -

parton shower merging, cf. [6, 7].

We propose a similar criterion here. However, in contrast to jet measures like the

ones above, which can be applied to experimentally observable final states and which yield

experimentally well defined jets, this criterion is designed and applied on purely theoretical

grounds. It is based on the behaviour of QCD amplitudes at the next-to-leading order and

employs flavour and colour information of the respective partons. For our purposes this

criterion proved to be advantageous over standard kT algorithms as it correctly identifies

individual infrared enhanced QCD branchings.
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4.1 Definition

Consider two partons i and j, which can, in terms of flavour and colour, originate from a

common mother parton (the splitter) ĩj. The following jet criterion is then proposed

Q2
ij = 2 pipj min

k 6=i,j

2

Ck
i,j + Ck

j,i

, (4.1)

where for final state partons i and j

Ck
i,j =





pipk

(pi + pk)pj
− m2

i

2 pipj
if j = g

1 else

. (4.2)

For initial state partons a, we consider the splitting process a → (aj) j. With the momen-

tum of the combined particle (aj) given by paj = pa − pj , we define

Ck
a,j = Ck

(aj), j . (4.3)

The minimum in eq. (4.1) is over all possible colour partners k of the combined parton ĩj,

which can be thought of to act as spectators in the splitting process.

In the following, it is shown that this jet criterion indeed correctly identifies soft and

collinear parton splittings in QCD matrix elements and is thus suited to separate the

matrix-element from the parton-shower domain in the merging.

4.2 Soft limit

If the energy of a single gluon j tends to zero in any fixed direction q, described through

pj = λq, λ → 0, the above jet criterion behaves as

1

Q2
ij

→ 1

2λ2

1

2 pi q
max
k 6=i,j

[
pipk

(pi + pk) q
− m2

i

2 piq

]
. (4.4)

The corresponding singularity of the matrix element is thus correctly identified, cf. [43].

4.3 Quasi-collinear limit for final-state splittings

Consider two final-state partons i and j and an arbitrary spectator-parton k. Let pij =

pi + pj and let the light-like helper vectors l and n be defined by

pij = l + αij n ,

pk = n + αk l .
(4.5)

This system has the solution

l =
1

1 − αijαk
(pij − αij pk) , n =

1

1 − αijαk
(pk − αk pij) , (4.6)
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where αij = p2
ij/γ, αk = p2

k/γ and γ = 2 ln = pijpk +
√

(pijpk)2 − p2
ijp

2
k, cf. [44]. The

momenta pi and pj can now be expressed in terms of l, n and a transverse component, k⊥.

pµ
i = z lµ +

m2
i + k2

⊥

z

nµ

2 ln
+ kµ

⊥ ,

pµ
j = (1 − z) lµ +

m2
j + k2

⊥

1 − z

nµ

2 ln
− kµ

⊥ .

(4.7)

A relation for p2
ij is immediately obtained,

p 2
ij − m2

i − m2
j =

k2
⊥

z(1 − z)
− 1 − z

z
m2

i −
z

1 − z
m2

j . (4.8)

Taking the quasi-collinear limit amounts to the simultaneous rescaling [45]

k⊥ →λk⊥ , mi →λmi , mj →λmj , mij →λmij . (4.9)

Then, 2 pipj → λ2(p 2
ij − m2

i − m2
j) and, independent of k,

1

Q2
ij

→ 1

2λ2

1

p 2
ij − m2

i − m2
j

(
C̃i,j + C̃j,i

)
. (4.10)

Here,

C̃i,j =





z

1 − z
− m2

i

2 pipj
if j = g

1 else

. (4.11)

Equation (4.11) corresponds to the leading term of the massive Altarelli-Parisi splitting

function for z → 1 [45]. The corresponding term for z → 0 (if present) is generated by C̃j,i.

4.4 Quasi-collinear limit for initial-state splittings

Now consider the initial-state parton a, the final-state parton j and an arbitrary spectator

parton k. Let paj = pa − pj, and let the light-like helper vectors l and n be defined by

pa = l + αa n ,

pk = n + αk l .
(4.12)

Then l and n are found as before, eq. (4.6). The momenta paj and pj are decomposed

as follows

pµ
aj = z lµ +

p2
aj + k2

⊥

z

nµ

2 ln
+ kµ

⊥ ,

pµ
j = (1 − z) lµ +

m2
j + k2

⊥

1 − z

nµ

2 ln
− kµ

⊥ .

(4.13)

Taking the quasi-collinear limit yields 2 papj → λ2
∣∣∣p 2

aj − m2
a − m2

j

∣∣∣ such that, independent

of k
1

Q2
aj

→ 1

2λ2

1∣∣∣p 2
aj − m2

a − m2
j

∣∣∣

(
C̃(aj),j + C̃j,(aj)

)
, (4.14)

where C̃(aj),j is given by eq. (4.11).
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5 Monte Carlo programs for the study

In this section, we present the Monte Carlo programs that have been employed in the actual

implementation of the merging algorithm outlined in section 3. As discussed in section 3.4,

the foremost aim for this publication is to study the specific systematics of the proposed

merging procedure.

For tree-level amplitudes there exists now a full wealth of publicly available programs

that accomplish the evaluation of (nearly) arbitrary multi-parton processes within the

Standard Model and some of its most prominent extensions. These highly automated

tools, called matrix-element or parton-level generators, either rely on the translation of

Feynman diagrams into helicity amplitudes [46] or make use of recursive relations to obtain

compact expressions for the amplitudes [47, 48]. In addition to the pure matrix elements

they provide suitable phase-space integrators to permit the evaluation of cross sections and

the generation of actual parton level events. In the context of this work we employ two

different matrix-element generators, the well-established program Amegic++ [49] and the

recently released code Comix [50]. Both codes are integrated into the multi-purpose event

generator Sherpa [12] that steers the event generation and hosts various interfaces to

parton showers, hadronisation routines, analysis methods and the like. The two programs

share the capability to simulate arbitrary Standard Model processes at tree-level. Their

main difference lies in the treatment of colour, providing us with a handle on the related

systematic uncertainties. We will briefly repeat the main features of both approaches in

Secs 5.1 and section 5.2, respectively.

Contrary to the matrix-element generators, there exist only few publicly available

implementations of parton-shower algorithms. There is the class of Pythia-like parton

showers using either virtuality [51] or transverse momentum [52] as evolution variable. On

the other hand there are implementations of angular-ordered parton showers in the Herwig

and Herwig++ generators, see for instance [53] and references therein. A shower imple-

mentation based on colour dipoles became available with the release of the Ariadne [30]

program. For our study we employ the parton-shower model presented in [35]. This ap-

proach relies on Catani-Seymour dipole factorisation of QCD amplitudes and organises

subsequent parton emissions in terms of an invariant transverse momentum. Aspects of

this parton-shower model relevant for combining it with matrix element calculations will

be discussed in section 5.3.

5.1 The matrix-element generator Amegic++

Amegic++ [49] is a tree-level matrix-element generator, based on Feynman diagrams. To

evaluate the single amplitudes of a given process, the helicity methods introduced in [55]

are employed. Diagrams are constructed and sorted according to their respective colour

structure. A colour matrix for the full squared matrix element is computed using standard

methods. Each single Feynman diagram is then decomposed into basic building blocks in

the helicity formalism. It is important to note in this context, that information about the

diagrams can be accessed during the runtime of Sherpa and therefore clustering sequences

within the merging formalism can be chosen according to the propagator structure of the
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contributing graphs. Thus, unphysical combinations can be prevented. The fact that the

treatment of colour in Amegic++ essentially follows textbook methods is however rather

problematic in the context of a matrix element - parton shower merging. Since it is not

possible within the code to access colour-ordered amplitudes, a “most probable” colour

structure must be selected on kinematic grounds. This then yields the nodal values to

define starting conditions for parton showers.

5.2 The matrix-element generator Comix

Comix is based on an extension of the colour-dressed Berends-Giele recursive relations for

QCD amplitudes [37] to the full Standard Model. These relations are essentially equiv-

alent to the Dyson-Schwinger recursion employed for instance in [47]. For any recursive

calculation, the growth in computational complexity of the algorithm solely depends on

the number of external legs at elementary vertices of the theory. Thus within Comix any

four-particle vertex of the Standard Model is decomposed into three-particle vertices [50].

This leads to an improved performance for large-multiplicity matrix elements, compared to

Amegic++. The summation (averaging) over colours in QCD and QCD-associated pro-

cesses is performed in a Monte Carlo fashion and colour-ordered amplitudes can therefore

be computed. Following the reasoning of [37], the colour-flow basis is employed through-

out the code. As discussed in [36] and section 2.5, this yields a certain correspondence

between the large-NC limit employed in parton-shower simulations and full QCD results.

Comix allows to access current information during event generation, such that, like for

Amegic++, unphysical clusterings in the matrix element - parton shower merging can be

prevented. The corresponding algorithm respects the actual colour assignment of external

states, cf. section 2.5.

5.3 The Catani-Seymour subtraction based shower generator

In this work we employ a shower approach based on Catani-Seymour (CS) dipole factori-

sation, which will be denoted by Css [35]. The model was originally proposed in [33] and

worked out and implemented in [34, 35]. It relies on the factorisation of real-emission ma-

trix elements in the CS subtraction framework [43, 56]. There exist four general types of

CS dipole terms that capture the complete infrared singularity structure of next-to-leading

order QCD amplitudes, namely splitting initial-state particles accompanied by an initial or

final-state parton as spectator, or branching final-state lines associated with either another

final-state leg or an incoming parton as spectator. In the large-NC limit, the splitter and

spectator partons are always adjacent in colour space. The dipole functions for the vari-

ous cases, taken in four dimensions and averaged over spins, are used as shower splitting

kernels. Their infrared singularities are regularised through a finite cutoff parameter of

order ΛQCD, the shower stopping scale. Consider, as an example, the case of a splitting

initial-initial CS dipole, cf. figure 1. Following the nomenclature used in [35], we can then,

in analogy to eq. (2.3), identify

K → Ka(ai)(xi,ab,k
2
⊥) =

αs(k
2
⊥/4)

2π
〈Vai,b(xi,ab)〉 . (5.1)
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ãi

a

i

b

〈Vai,b〉

pb

pa

pi

Figure 1. Schematic view of the splitting of an initial-state parton with an initial-state spectator.

The blob denotes the n-parton matrix element. Incoming and outgoing lines label initial- and

final-state partons, respectively.

The actual splitting is parametrised in terms of the Lorentz invariants

xi,ab =
papb − pipa − pipb

papb
and k2

⊥ = 2p̃aipb ṽi
1 − xi,ab

xi,ab
, where ṽi =

pipa

papb
. (5.2)

The invariant transverse momentum k2
⊥ acts as ordering parameter for initial-state

splittings in the actual shower algorithm.5 The three other CS dipole configurations are

treated following a similar reasoning as just presented for initial-initial dipoles. Corre-

sponding Sudakov form factors for all branching types, taking into account finite parton

masses and strictly relying on Lorentz-invariant variables, have been derived in [35].

All branchings in the Css formalism implement exact four-momentum conservation

and the particles after an evolution step are kept on their mass-shell. The phase-space

maps from an n to an n + 1 particle final state are exact and cover the whole phase space.

With the only exception of splitting CS initial-initial dipoles, the momentum recoil of a

certain branching is compensated locally by the assigned spectator parton. For splitting

initial-initial dipoles the spectator momentum is kept fixed, consequently the recoil is taken

by the entire ensemble of final-state particles.

The recoil strategy in this shower scheme, in conjunction with the strictly Lorentz-

invariant evolution parameters and splitting variables, eventually allows the construction

of a clustering algorithm along the lines of section 2.3 and a truncated shower, cf. section 2.4.

Both are necessary ingredients of the merging formalism presented in this publication. The

main difference with respect to other shower formulations, in this respect, lies in the fact

that the recoil partner of a splitting parton is always a single external line of the current

initial or final state.6 If this is not guaranteed, the implementation of a clustering algorithm

as proposed in section 2.3 becomes cumbersome.

5 Note that the actual form of k
2
⊥ is different to the one in [35], allowing to suppress an additional

Jacobian factor obtained ibidem. We employ this same quantity as ordering parameter for both dipole

types with initial-state splitters, whereas the choice for dipoles with final-state splitter remains unchanged

with respect to [35], namely the invariant transverse momentum squared of the two splitting products.
6This is also true for initial-initial dipoles, since the shower formulation is invariant and the reference

frame can be chosen as the centre-of-mass frame of the process before the splitting.
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Another apparent advantage of this parton-shower model is that it inherently respects

QCD soft colour coherence. By construction in Catani-Seymour factorisation the eikonal

factor associated to soft gluon emission off a colour dipole, used to derive the angular or-

dering constrained in conventional parton showers, is exactly mapped onto two CS dipoles.

These two dipoles just differ by the role of emitter and spectator, see [56]. Accordingly,

the shower algorithm based on Catani-Seymour dipole factorisation captures the essential

contributions of the next-to-leading logarithmic corrections, beyond the naive resumma-

tion of the leading soft and collinear enhanced terms. For a further discussion on related

issues, the reader is referred to [57]. For a comparison of the shower model at hand with

experimental data sensitive to the correct modelling of soft-gluon emission see [35].

A potential shortcoming of the shower algorithm based on Catani-Seymour dipole

terms is that certain dipole functions connecting the initial and final state may assume

negative values in some non-singular phase-space regions. This prohibits their naive in-

terpretation in terms of splitting probabilities, cf. [34, 35]. This problem, however, can

now partially be cured once shower emissions are corrected by exact matrix-element cal-

culations that provide the appropriate description of QCD amplitudes in these regions of

phase space.

6 Results

In this section we present results generated with the Monte Carlo programs described

previously. The main purpose of this brief study is to quantify some systematic uncertain-

ties introduced by the proposed merging algorithm, cf. section 3.4. Therefore, three main

questions are considered:

• Are observables sufficiently independent on the “unphysical” phase-space separation

criterion Qcut?

• How does the description of additional jets by the matrix element improve the pre-

diction of experimentally relevant quantities?

• As a combination of the above: Is the total cross section as predicted by the lowest

order unaltered to the required accuracy?

Using the two matrix-element generators Amegic++ and Comix, together with the shower

generator Css in the framework of Sherpa, we also have the opportunity to study effects

of using different methods to assign colours in the large NC limit.

In the first part of the section we focus on e+e− annihilation into hadrons. This setup

allows to study the algorithm in pure final-state QCD evolution. The influence of different

colour-assignment strategies is investigated in this configuration. The second part deals

with Drell-Yan lepton pair production in hadronic interactions, which is used to validate

the algorithm in combined initial and final-state evolution.

Jets at parton level include the quark flavours d, u, s, c and b as well as gluons. The

PDF set employed is CTEQ 6L [58], which defines the corresponding αs parametrisation
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log10(Q
2
cut/s)

Nmax

0 1 2 3 4

-1.25

40.17(1)

39.65(3) 39.66(3) 39.66(3) 39.67(3)

-1.75 39.38(5) 39.29(6) 39.13(5) 39.13(5)

-2.25 39.27(8) 38.35(9) 37.89(11) 37.60(10)

Table 1. Total cross sections for e+e− → jj at
√

s = 91.25GeV in [nb] and their dependence on the

separation criterion and the maximum number of additional jets produced in the matrix element.

in hadron collisions. All other generator parameters are left at the default values of the

Monte Carlo programs, since none of them has any impact on the QCD predictions.

Hadron-level results are produced using Sherpa with the fragmentation module

Ahadic++ [59], the hadron and τ decay package Hadrons++ [60] and a simulation

of extra QED radiation through Photons++ [61]. The hadronisation phases remain un-

tuned so far and will be tuned to data at a later stage with the help of the Professor

package [62]. The Rivet package [63] is employed for analysis and comparison to data.

6.1 QCD jet production in e+e− collisions

To compare with LEP data from the Run I period, a setup with cms energy
√

s = 91.25GeV

is chosen and a merged sample of e+e− → (N + 2) jets is produced at parton level, with

N denoting the number of additional jets in the matrix element and N ≤ Nmax. We vary

Nmax between zero, i.e. no merging at all, and four.

Total cross sections and jet rates. Firstly, we present a comparison of total cross

sections predicted by the merging algorithm for various values of the separation criterion

Qcut and the maximum jet multiplicity Nmax. Table 1 shows only minor deviations, i.e. up

to 6.4%, between the leading-order cross section and predictions for the merged samples.

We can thus confirm that the proposed merging approach preserves the cross section of the

leading-order process.

Figure 2 shows integrated rates of jets determined with the Durham kT -algorithm [10]

as a function of the analysis cut ycut. As well as giving a fine-grained insight into the

number of jets to be expected for a given analysis cut, they also provide the assurance that

the merging algorithm gives accurate predictions for the perturbative region in which it

operates. Jets found with cuts below the shower regime, ycut ≈ 10−3.5, are influenced by

hadronisation effects, and are thus not relevant within the scope of this paper. Even scales

slightly above might be populated e.g. by decays of heavy mesons. Monte Carlo results

have been produced using a merged sample for up to four additional jets in the final state,

generated with Comix and showered with Css with a merging cut log10(Q
2
cut/s) = 2.25.

Differential distributions. Due to the close correspondence between the jet criterion,

eq. (4.1), and the Durham measure for jets in e+e− collisions (cf. also appendix A.1), dif-

ferential jet rates are particularly suited to assess merging systematics. The rate yn n+1

shows the jet measure at which n+1 jets are clustered into n jets according to the Durham
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Figure 2. Integrated jet rates compared to data from LEP [64].

kT -algorithm. The phase-space separation cut Qcut manifests itself as a narrow transi-

tion region between matrix-element and parton-shower domain around yn n+1 ≈ Q2
cut/s.

Merging systematics can thus be inferred from deviations between samples with different

phase-space separation cuts in this region.

Figure 3 shows the differential jet rates for a merged sample of up to four additional

jets from the matrix element, generated with Comix and showered with the Css. The

merging cuts, which have been used, are log10(Q
2
cut/s) = −2.25, log10(Q

2
cut/s) = −1.75

and log10(Q
2
cut/s) = −1.25. We observe only tiny deviations between the predictions of

the various samples.

Event-shape observables like thrust, sphericity and the energy-energy correlation are

presented in figure 4. Details about their definition and the corresponding data from

experiment can be found in [65]. These observables are well described by an appropriately

tuned pure parton-shower setup already, and no matrix element improvement is therefore

necessary. On the other hand, the comparison between the pure parton-shower sample and
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Figure 3. Differential jet rates for three different merging cuts compared to data from LEP [64].
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Figure 4. Event-shape observables compared to data from LEP [65].

merged samples constitutes an important consistency check. We find very good agreement

of the respective predictions.

Colour assignment at large NC. To investigate the influence of different strategies

to handle colour in matrix-element generation and merging, we compare the generators
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Figure 5. Different approaches to colour treatment and their effects on y34, α34 and EEC. Data

are taken from [64, 65].

Comix and Amegic++. Comix is run in two different modes, corresponding to the two

strategies of assigning colours in the large-NC limit explained in section 2.5. More precisely

we denote by

’partial σ’

selection of a colour assignment according to the proportionate squared partial am-

plitude corresponding to this large-NC configuration (i.e. the first method presented

in section 2.5)

’random’

selection of a colour assignment according to the ratio of the squared partial amplitude

corresponding to this large-NC configuration and the total amplitude squared (i.e.

the second method presented in section 2.5)

’heuristic’

heuristic colour assignment to the previously colour-summed amplitudes in

Amegic++ (cf. Sec 5.1)

Figure 5 shows respective predictions for the three different choices. Since the first config-

uration where different colour assignments could take effect arises in four-jet events, the

selected observables are the 3 → 4 jet rate and the angle α34 between the two softest jets,

selected on an event-by-event basis. Furthermore, the energy-energy correlation typically

shows sensitivity to the connection of the hadronisation phase to the parton-shower output,

and could thus depend on the colour setting as well. We observe no significant differences

between the various options. This encourages to proceed with even the heuristic method,

which enables us to employ the merging technique with various kinds of matrix element

generators, including those which do not allow a projection onto the large-NC limit.

6.2 Drell-Yan lepton production in pp̄ collisions

The scope of this section is to validate the proposed merging algorithm in collisions with

hadronic initial states. One of the simplest processes in this setup is Drell-Yan lepton pair

production. It constitutes an important testing ground to validate the applicability of the

proposed jet criterion and the interplay of the merging algorithm with the PDF’s.
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Qcut

Nmax

0 1 2 3 4 5 6

20 GeV

192.6(1)

191.0(3) 190.5(4) 189.0(5) 189.4(7) 188.2(8) 189.9(10)

30 GeV 192.3(2) 192.7(2) 192.6(3) 192.9(3) 192.7(3) 193.2(3)

45 GeV 193.6(1) 194.4(1) 194.3(1) 194.4(1) 194.6(2) 194.4(1)

Table 2. Total cross sections [pb] in pp̄ → e+e− + jets at
√

s = 1960 GeV and their dependence on

the merging cut.

Event generation has been set up for pp̄-collisions at a centre-of-mass energy of
√

s =

1960GeV. For the hard process a merged sample of pp̄ → e+e−+N jets has been produced,

where N ≤ Nmax with 0 ≤ Nmax ≤ 6. In addition, a cut of 66GeV < me+e− < 116GeV has

been applied at the matrix-element level. The factorisation scale has been chosen as m2
e+e− .

Note that the transverse mass squared of the lepton pair, m2
T,e+e− = m2

e+e−+k2
⊥,e+e− , which

is often selected as the factorisation scale in other merging approaches, is not a proper

choice for the proposed algorithm. It is non-continuous with respect to the transverse

momentum, k2
⊥,e+e− , because the leading-order configuration is generated with k2

⊥,e+e− = 0

and the minimum transverse momentum of events with one additional jet is limited by the

phase-space separation cut.

Total cross sections and jet rates. Again, we first present a comparison of total

cross sections predicted by the merging algorithm for various values of the separation

criterion Qcut and the maximum jet multiplicity Nmax. Table 2 shows the respective results.

Differences range up to 2.3%, between the leading-order cross section and predictions for

the merged samples. Usually, the systematic uncertainties in hadronic collisions are larger

than in e+e− reactions, partly due to PDF uncertainties and partly because the shower

evolution generated by the Css and the resummation used to compute the PDF’s are not

entirely compatible, cf. [56]. This effect could account for slightly larger deviations between

results for the merged samples. However, we observe a reasonably low variation.

Figure 6 shows integrated rates of jets determined with the CDF Run II kT -

algorithm [66] as a function of the analysis cut dcut. Monte Carlo results have been pro-

duced using a merged sample for up to five jets in the final state, generated with Comix

and showered with the Css with a merging cut Qcut = 20GeV.

Differential distributions. To study the merging systematics in more detail, we inves-

tigate again the differential jet rates dn n+1, describing the scales at which n + 1 jets are

clustered into n jets according to the CDF Run II kT -algorithm. This algorithm has a free

parameter, D, which accounts for the missing information on beam partons. Hence, in

this setup, no firm relation can be established between the jet measure of the kT -algorithm

and the jet criterion, eq. (4.1). Nevertheless, a certain correspondence between the two

quantities exists, making these distributions a good testing ground for variations around

the merging cuts.

To produce figure 7 a merged sample of up to five jets from the matrix element has

been generated with Comix and showered with the Css. The merging cuts, which have
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Figure 6. Integrated jet rates as a function of the analysis cut.

been used, are Qcut = 20GeV, Qcut = 30GeV, and Qcut = 45GeV. As in the case of e+e−

collisions, the deviations between the predictions of the various samples are small.

Most observables are even less sensitive to the precise value of the merging cut. As an

example, figure 8 displays the transverse momentum of the two leading jets for the three

merging cut values in comparison to data from CDF [67].

It is also interesting to understand the influence of the maximal number of jets gen-

erated from the matrix element, Nmax, on experimental observables. We observe that

typically the predictions are fairly stable for the Nmax leading jets. To put it another way,

for a given analysis investigating the n’th jet, one should use a Monte Carlo sample with

Nmax ≥ n. Due to the increased phase space available for QCD radiation at the LHC, the

higher jet multiplicities will play an even more important role there.

Again, comparing to data from CDF [67] in figure 9 and varying Nmax between zero

and three, the importance of correctly describing additional hard jet production by the

respective matrix elements can be estimated.

7 Conclusions

In this publication we have presented a general formal framework to discuss algorithms

for the merging of multi-jet matrix elements and parton showers. We have constructed a

merging algorithm that maintains the logarithmic accuracy provided by the parton shower

in both initial and final state radiation. In this construction, special emphasis is put

on an invariant formulation of the respective phase-space separation criterion. Because

this criterion is not identical with the parton-shower evolution parameter, the logarithmic

accuracy can only be maintained by running a truncated shower.

Hard matrix elements must be interpreted in the large-NC limit to provide an input for

shower Monte Carlos. Since the respective strategy is not unambiguous, the influence of dif-

ferent methods to assign colours was studied. We find no significant difference between the
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Figure 7. Differential jet rates dn n+1 for three different merging cuts.
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Figure 8. Jet pT in Njet ≥ 1 and Njet ≥ 2 events compared to data from CDF [67].

– 28 –



J
H
E
P
0
5
(
2
0
0
9
)
0
5
3

b

b

b

Nmax = 0

Nmax = 1

Nmax = 2

Nmax = 3

datab

10 1

10 2

10 3

10 4
σ
(N

je
t)

(s
ca

le
d

to
fi
rs

t
b
in

)

1 2 3

0.6

0.8

1

1.2

1.4

Njet

M
C

/
d
a
ta

b
b

b

b

b

b

b

Nmax = 0

Nmax = 1

Nmax = 2

Nmax = 3

datab

10−1

1

10 1

10 2

d
σ
/d

p
⊥
(j

et
)

fo
r

N
je

t
≥

2

50 100 150 200 250 300

0.6

0.8

1

1.2

1.4

p⊥(jet) [GeV]

M
C

/
d
a
ta

Figure 9. Jet multiplicity and jet pT in Njet ≥ 2 events compared to data from CDF [67].

proposed algorithms, which range from heuristic assignment to the choice of a configuration

with probability proportional to the respective colour ordered subamplitude squared.

We have checked the systematics of the newly proposed algorithm in e+e− annihilation

into hadrons and in Drell-Yan lepton pair production. We find greatly reduced uncertain-

ties, compared to previously employed methods like the original CKKW technique. This

statement holds for inclusive quantities such as total cross sections and jet rates, as well

as for differential distributions.
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A Relation to other merging methods

In this appendix we discuss, on formal grounds, the relation of the merging algorithm

proposed here with the original CKKW method [6]. Its relation with the CKKW-L method,

presented in [13], and with the MLM method [15] will also briefly be discussed, arguing on

more algorithmic grounds.
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A.1 Formal equivalence with the CKKW method at NLL accuracy

Let us start by showing the formal equivalence, at next-to-leading logarithmic accuracy, of

the CKKW method presented in [6] and the proposed merging algorithm. For this purpose,

the generating function φa

(
Q, q ;φ(0)

)
for a jet at scale q, produced by a jet that emerged

at scale Q with initial condition φ(0) is computed using the coherent-branching formalism.

We focus on massless partons. All jet scales are given in terms of the Durham jet measure,

which is defined as [10]

Q2
ij = 2min

{
E2

i , E2
j

}
(1 − cos θij) = 2 pipj min

{
z̃i,j

1 − z̃i,j
,
1 − z̃i,j

z̃i,j

}
, (A.1)

where

z̃i,j =
Ei

Ei + Ej
. (A.2)

Note that in the collinear region and for massless particles, the jet criterion, eq. (4.1),

effectively encodes the Durham measure for all splittings which are singular in z̃i,j or

1 − z̃i,j. It is therefore justified to employ the Durham measure instead throughout this

computation.

Collinear factorisation is assumed while the evolution parameter is the angular variable

t → q̃ 2 =
k2
⊥

z2(1 − z)2
=

p2

z(1 − z)
, (A.3)

with z the light-cone momentum fraction in the splitting and p2 the virtuality of the mother

parton.

Comparing the coherent-branching formalism to an arbitrary shower algorithm respect-

ing colour coherence, potential differences arise because coherence is implemented through

angular ordering. However, with regard to QCD evolution in the collinear regime, both

methods are formally equivalent.

The generating function is defined by the differential equation

dφa

(
q,Q0;φ

(0)
)

d log(q/Q0)
=

∫ 1

0
dz

∑

b=q,g

Kab(z, q)Θ [ min {z, 1 − z} q − Q0 ]

×
[
φb

(
zq,Q0;φ

(0)
)

φc

(
(1 − z)q,Q0;φ

(0)
)
− φa

(
q,Q0;φ

(0)
) ]

.

(A.4)

where

Kab(z, q) =
αs(z(1 − z) q)

2π
Pa→bc(z) . (A.5)

The upper bounds zq and (1−z)q in φb and φc account for the modified starting conditions

in the evolution of the respective jet [68]. The functions φ(0) represent the initial condition

for the evolution.

Equation (A.4) can be cast into a more suitable form by employing Sudakov form fac-

tors in terms of the Durham jet measure, computed at next-to-leading logarithmic accuracy,
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cf. [10]. For the purpose of this analysis we include the finite terms, such that

∆̄q(q,Q) = exp

{
−

∫ Q

q

dq̄

q̄

∫ 1−q/Q

0
dz 2Kqq(z, q)

}

∆̄g(q,Q) = exp

{
−

∫ Q

q

dq̄

q̄

[ ∫ 1−q/Q

q/Q
dzKgg(z, q) + Nf

∫ 1

0
dzKgq(z, q)

] }
.

(A.6)

Thus,

d

d log(q/Q0)

φa

(
q,Q0;φ

(0)
)

∆̄a(Q0, q)
=

1

∆̄a(Q0, q)

∫ 1

0
dz

∑

b=q,g

Kab(z, q)

× Θ [min {z, 1 − z} q − Q0 ] φb

(
zq,Q0;φ

(0)
)

φc

(
(1 − z)q,Q0;φ

(0)
)

.

(A.7)

For quark jets, employing that the largest contribution to the branching q → q comes from

the region 1 − z ≪ 1,

d

d log(q/Q0)
log

φq

(
q,Q0;φ

(0)
)

∆̄q(Q0, q)
≈

∫ 1−Q0/q

0
dz 2Kqq(z, q)φg

(
(1 − z)q,Q0;φ

(0)
)

. (A.8)

Note that the lower limit on the z integration is redefined to equal zero, because the largest

contribution to the integral arises from the region z ≈ 1. Using φq

(
Q0, Q0;φ

(0)
)

= φ
(0)
q

and inserting the quark Sudakov form factor, yields

φq

(
Q,Q0;φ

(0)
)

≈

φ(0)
q exp

{∫ Q

Q0

dq

∫ 1−q/Q

0
dz 2Kqq(z, q)

[
φg

(
q,Q0;φ

(0)
)
− 1

] }
.

(A.9)

The solution to the respective evolution equation for gluon jets can be found in [10].

As discussed in [6], a vetoed parton shower can be expressed in terms of a different

starting condition, φ(0) → φ̃(Q,Qcut, Q0;φ
(0)). Then, in order to generate the correct jet

fractions at some scale Q0, the following identity is imposed:

φa(Q,Qcut; φ̃)
!
= φa

(
Q,Q0;φ

(0)
)

. (A.10)

Substituting the generating function φq, eq. (A.9), yields, for the quark generating function,

φq

(
Q,Q0;φ

(0)
)

= φ̃q(Q,Qcut, Q0;φ
(0))

× exp

{∫ Q

Qcut

dq

∫ 1−q/Q

0
dz 2Kqq(z, q)

[
φg

(
q,Q0;φ

(0)
)
− 1

] }
.

(A.11)

Consequently, the result for the modified parton shower reads

φ̃q(Q,Qcut, Q0;φ
(0)) = φ(0)

× exp

{ ∫ Qcut

Q0

dq

∫ 1−q/Q

0
dz 2Kqq(z, q)

[
φg

(
q,Q0;φ

(0)
)
− 1

] }
.

(A.12)

– 31 –



J
H
E
P
0
5
(
2
0
0
9
)
0
5
3

At next-to-leading logarithmic accuracy this is equivalent to the phase-space slicing method

introduced in section 3, because eqs. (A.11) and (A.12) can be written as

φq

(
Q,Q0;φ

(0)
)

= φ̃q(Q,Qcut, Q0;φ
(0))

× exp

{∫ Q

Q0

dq

∫ 1−q/Q

0
dz 2KME

qq (z, q)
[
φg

(
q,Q0;φ

(0)
)
− 1

]}
(A.13)

and

φ̃q(Q,Qcut, Q0;φ
(0)) = φ(0)

× exp

{ ∫ Q

Q0

dq

∫ 1−q/Q

0
dz 2KPS

qq (z, q)
[
φg

(
q,Q0;φ

(0)
)
− 1

]}
.

(A.14)

Here, the combination of an extended integration range for q and the cutoff due to the Θ-

functions contained in KME and KPS generates exactly the same q-integral as in eqs. (A.11)

and (A.12). A similar proof holds for the gluon-jet generating function.

Note that the extended range for z-integration in eq. (A.8) would have been generated

in a natural way by the jet criterion, eq. (4.1). For q → qg splittings the Θ-function corre-

sponding to the one in eq. (A.4) would read Θ [(1 − z)q − Q0], thus setting the integration

boundaries 0 ≤ z ≤ 1 − q/Q0. In any case the contribution from the range 0 ≤ z ≤ q/Q0

is subleading.

Algorithmic differences. Arguing on more algorithmic grounds, the following differ-

ences between the CKKW method and the new merging prescription presented in this

publication can be established:

• Usually, Sudakov form factors within the CKKW approach are implemented in the

form of (semi-)analytic functions, see for example [8]. The accuracy of the method is

then limited by the level of correspondence between these functions and the respective

parton-shower result.

• Truncated showers, which, according to section 2.4, are mandatory to establish for-

mal equivalence of the evolution in the pure parton shower and the matrix-element

improved Monte Carlo algorithm, are implemented in an approximate way. They are

replaced by modified starting conditions for external partons, rather than emissions

from internal lines. The net effect is, that (up to typically less important momentum

reshuffling) no redefinition of matrix element kinematics is necessary.

A.2 Correspondence to the CKKW-L method

In order to see the relation of the algorithm proposed here with the CKKW-L prescription

presented in [13], let us concentrate first on the case of pure final-state radiation. A prime

example for this is e+e−-annihilations into hadrons. In this case, CKKW-L, based on

Ariadne [30], the jet criterion and the (dipole) shower-evolution parameter are identical.
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In fact, jets are defined by the dipole transverse momentum p⊥ also used in the shower.

For a splitting ĩk̃ → ijk,

p2
⊥ =

sijsjk

sĩk̃

. (A.15)

Because both quantities coincide, there is no need for a truncated shower: Whenever an

emission is harder than that of a node given by the hard matrix element, i.e. at a larger

p⊥, then it will produce a new jet. Since such emissions lead to vetoing the event, no

intermediate emissions, which are not giving rise to a jet, must be taken into account. In

this case the algorithm for e+e− annihilations reduces to

• Relevant multi-jet cross sections for the process under consideration are calculated

with the phase-space restriction Q > Qcut. Strong couplings are computed such that

they give an overestimate, which can be reweighted.

1. Events are generated according to the above defined cross sections with kinematics

determined by the respective matrix elements.

2. The most probable shower history of the final state is determined through backward

clustering, cf. section 2.3. The clustering is guided by information from the matrix

element, which means that only those shower histories may be identified, which have

a corresponding Feynman diagram.

3. The event is accepted or rejected according to a kinematics-dependent weight, which

corresponds to evaluating strong couplings in the shower scheme and computing the

no-branching probability for each dipole. This is done by starting the shower from

the scale at which the dipole emerged. If the first emission generated by the shower

is harder than the scale given by the next matrix-element generated node related to

that dipole (dipole contains at least one internal leg), or harder than Qcut (dipole

made of two external legs), then the event is rejected.

It is apparent that this is in perfect agreement with the method proposed in this paper,

if the additional complication of the truncated shower can be neglected, which becomes

obsolete if the shower-evolution parameter and the jet criterion coincide.

Comparing our method with the CKKW-L method in case of hadron collisions is not

that simple. In principle, the extension of the algorithm for the dipole shower presented

above to the case of hadron collisions is straightforward, especially with identical jet crite-

rion and shower-evolution parameter. However, due to the fact that Ariadne re-interprets

initial-state radiation as final-state radiation with one or both dipole legs being the pro-

ton remnant, it is not entirely clear, how PDF effects are accounted for. An obvious way

out would be to replace this non-perturbative algorithm for initial-state radiation with a

formulation that rests entirely on the grounds of perturbation theory and the factorisation

theorems, like the one presented in [32]. This opens an arena for further interesting studies.

A.3 Relation with the MLM method

It is difficult to establish any formal correspondence between the method proposed here

and the MLM prescription [15]. This is mainly due to the fact that they indeed base on
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different ideas and methods. To our understanding, though, the main difference lies in

the treatment of radiation off intermediate legs. Therefore we will very briefly describe

the MLM method here and we will outline the apparent differences with respect to the

new approach.

The MLM prescription, also presented in [18] bases on using a simple cone defini-

tion as the jet criterion to generate the parton configurations at the matrix-element level.

The scales of strong couplings are reconstructed by using a backward clustering with a

k⊥ measure. Then the accepted configurations are passed on to parton-shower routines,

typically the ones of Pythia [69] (virtuality or p⊥-ordered shower) or of Herwig [53]

(angular-ordered shower). These codes typically reconstruct the parton-shower starting

scales of a multi-parton configuration by directly inspecting colour connections, without

any backward clustering and therefore partially neglecting intermediate legs and the radia-

tion originating from them. Having the starting conditions at hand, the shower is invoked

without any constraint. After it has terminated at the hadronisation scale the original par-

tons stemming from the matrix element are matched to the jets present at parton-shower

level, again defined by the cone algorithm. If such a match is not possible, either due to

extra, unwanted jets being produced in the parton shower or due to “loosing” jets in the

parton shower, the event is rejected.

The differences to the other algorithms are obvious:

• While the MLM prescription computes the Sudakov suppression weight in an inclu-

sive way, the other algorithms, the original CKKW approach, the CKKW-L method

and the algorithm proposed here, determine the Sudakov rejection by combining the

rejection weights from the individual partons. Therefore, the effect of “loosing” jets

is not present, and only the emergence of unwanted jets leads to vetoing the event.

• Because the definition of starting scales for the parton shower is left to the rou-

tines provided by Pythia and Herwig it is not entirely clear, how far radiation of

intermediate legs is accounted for.

In any case, however, at present, neither of the two codes, Pythia and Herwig

allows truncated showering. This, following our argument, would be mandatory to

formally guarantee the logarithmic accuracy provided by the respective parton-shower

algorithm.

Despite these differences, a good agreement of predictions obtained with the CKKW

method and the MLM method can often be observed. Respective results have been re-

ported for example in [18]. They indicate, in particular, that the differences between

the two methods may not be too important in the case of W+jets production at the

Tevatron and the LHC. It can, however, not be expected that this statement holds for

arbitrary processes.

B Merging with multiple leading-order processes

In this appendix, we consider situations like Drell-Yan production at large centre-of-mass

energies. In such configurations the scale of the leading-order process — in our case the
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lepton pair production process — is low compared to the potential scales of additional

jets. Hence, simply applying the pure merging prescription introduced in section 3 will

eventually result in missing hard radiation and therefore not lead to a good description of

experimentally relevant signatures. An example for such signatures would be a lepton pair

with mass lower than the transverse momentum of an accompanying QCD jet.

Note, that this is consistent with the proposed merging approach, since

the choice of a specific factorisation scale at the leading order corresponds

to generating additional QCD radiation up to an evolution parameter

limited by this scale. Instead, the solution lies in the dynamic definition

of a leading-order process for each event.

Let us stick to the example of Drell-Yan production. Shower branchings cannot take

place at scales larger than the factorisation scale, in this case usually the mass of the

Drell-Yan pair, mll. Jets harder than this scale should thus actually be described by a

leading-order process corresponding to “Drell-Yan + jet”-production. However, one needs

to preserve the integrity of the inclusive Drell-Yan sample up to its factorisation scale.

The event-generation algorithm allows to do so. The central idea is to reinterpret the

leading-order process as soon as the scale of jet production in any matrix-element config-

uration with additional jets exceeds the factorisation scale. The corresponding event is

then not taken into account for the inclusive Drell-Yan production sample, but is inter-

nally treated as part of the “Drell-Yan + hard jet”-regime. Its factorisation scale and the

corresponding shower starting conditions are redefined accordingly.

Note that the problem discussed in this appendix only occurs for leading-order con-

figurations which do not include any strong coupling.7 Also, jets at scales lower than the

mass of the Drell-Yan pair are always well described in the merging. Such configurations

can be produced by the parton shower, in principle at arbitrary multiplicity, because of

the highest multiplicity treatment introduced in section 3.3.

The relevance of the problem and the difference between the pure merging approach

and the refined approach with multiple leading-order processes depends on the scales which

are involved. If the phase space available to additional parton emission is not too large, like

in the case of W or Z production at the Tevatron, resummation effects are small, because

the difference between factorisation scale and the scale of hard extra jet production is

usually small. In this case, the pure merging algorithm can safely be employed, since not

too many hard jets can be generated, and this limited hard extra-jet multiplicity can be

accounted for by matrix elements.
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